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Abstract. A method for transforming low-density configurations of rods, discs or spheres to
rigidly jammed packings is described. InD dimensions, it repeats a cycle in which each particle
is moved towards to the centre of the cage of theD+1 neighbouring particles that most closely
contain it. Low-density fluid configurations of discs and spheres form rigidly jammed amorphous
packings with densities below the normal glass transition density. The glassy structures contain
large pores and many mobile rattler particles.

1. Introduction

The canonical partition functionQ(N,V, T ), for N particles in a volumeV at temperature
T , can be expressed as a sum of parts:

Q(N,V, T ) =
∑
k

qk(N, V, T ) (1)

which may be non–trivial when a suitable prescription [1–6] is given for assigning the states
within Q to the individualqk. For systems with continuous potentials the usual prescription
[4–6] consists of collecting intoqk all of those configurations that map to the same inherent
structure,k, when the system is instantaneously cooled. For hard discs, Stillinger, DiMarzio
and Kornegay [1] proposed subdividingQ with the following recipe: starting with any
low-density configuration, with periodic boundaries, the discs are uniformly expanded and
allowed to push each other apart until they reach a rigidly jammed state, which is the inherent
structure to which the initial configuration belongs. All configurations that compress to the
same structure, without distinction between states that differ only by the interchange of
identical particles, belong to that inherent structure and may be given the same labelk. In
two and three dimensions the number of distinct inherent structures is exp(αN) whereN
is the number of particles andα is of order unity [4–6].

Despite much clever work on the packing of discs and spheres, recently reviewed by
Meakin and Skjeltorp [7], who give many references, direct evidence about the distribution
of the densities of their inherent structures is lacking. Indirect evidence [8, 9], from attempts
to interpret the thermodynamic properties of fluids and glasses of discs and spheres in terms
of equation (1), shows that a broad distribution of inherent structures is needed to explain
the large change in heat capacity at the glass transition. In particular, it was suggested [8, 9]
that the most numerous inherent structures have densities near or below the glass transition
density of the fluids, but that these are not observed in the usual molecular dynamics
experiments because the fluids relax quickly to denser and more stable structures.
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This paper shows that the low-density glasses exist. They can be made by compressing
fluid configurations to jammed states in which the average disc makes 3.05± 0.1 contacts
or an average sphere makes 4.2± 0.1 contacts. A remarkable feature of these packings is
that about 6% of the discs or 4% of the spheres are free to move within large pores in a
rigidly jammed framework.

A specific prediction that the present work was designed to test is that a fluid of discs
or spheres, equilibrated at packing fractiony, samples glasses, or inherent structures, with a
limiting densityy0(y) that increases withy. If the number of glasses with limiting density
y0 follows a normal distribution about the most probable value,ym, then a few plausible
assumptions lead to the prediction [8, 9]

y0 = ym + y +
√
(ym − y)2+ 2C/γ

2
. (2)

The constantγ characterizes the width of the distribution andC is a measured property of
the glasses. For hard disks and spheres, the constants in equation (2) were chosen to fit
the pressure and entropy of the fluids and glasses [8, 9], so it is of interest to see whether
they agree with measured values ofy0(y). Equation (2) can be tested by compressing fluid
configurations, equilibrated at densityy, to their limiting densityy0(y), taking care not to
allow the configuration to escape from its inherent structure during the compression.

2. Methods

Three different methods were examined. The first is due to Mason [11], who notes that it was
suggested by Bernal [12]. It starts with a random array of points, or a fluid configuration,
then repeatedly locates the closest pair and increases their separation, by moving them apart
along the line of their centres. If the moves are small enough this method might approximate
the procedure proposed by Stillinger, DiMarzio and Kornegay [1]. The diameter of the discs
or spheres,σ , is defined, at any instant, as the separation between the closest two points.
The density, or packing fraction, is theny = (N/A)(π/4)σ 2 for discs, whereA is the
area, ory = (N/V )(π/6)σ 3 for spheres, whereV is the volume. Mason found, for hard
discs, that the density quickly increased toy ≈ 0.83 and thereafter increased slowly, due to
crystallization. For hard spheres, variations on Mason’s method [13–15] and other methods
[8, 14–17] yield limiting densitiesy0 near 0.648. Most attempts to make random packings
of hard discs have produced crystals [7, 11, 16, 17].

A non-freezing equimolar mixture of hard discs with diameters in the ratio 1.4:1 forms
glasses with limiting densityy0 = 0.851 and the glass transition occurs neary = 0.78 [9].
This mixture was studied using Mason’s [11] method. Starting from fluid configurations of
N = 400 discs, with periodic boundaries, previously equilibrated in a molecular dynamics
experiment, the distance between the centres of the closest pair was increased by 1%, 0.1%
or 0.01% in each move. The density converged to valuesy ≈ 0.83. 2× 108 moves
were required for convergence when the separation was increased by only 0.01%. The
final density was not significantly affected by the size of the moves. When the starting
density,y, is above 0.7, the limiting densities obtained by Mason’s method are within 1%
of values predicted [9] by equation (2) but when the starting density is lower the method
yields limiting densities about 5% higher than predicted. Similar results were obtained for
spheres [15].

In Mason’s method, the closest pair is separated without regard for consequent overlaps
with other particles. As discs separate they make new overlaps which push them back
together, so there is an inessential ‘vibrational’ component of the particle trajectories and
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this may allow the system to escape from its inherent structure. Results from the other
methods described below seem to confirm that this occurs, by showing that the same low-
density fluid configurations can be compressed to jammed states with limiting densities
that are 10% lower than those found by Mason’s method. However, Mason’s method is
not always wrong: for a tetravalent network model [10] it gave limiting densities in good
agreement with independently measured values.

The following methods are based on the idea that, to prevent the system escaping from
its inherent structure, a particle should remain trapped in the cage of its near neighbours
during the compression. InD dimensions, the method repeats a cycle in which each particle
is moved towards to the centre of the cage of theD + 1 neighbouring particles that most
closely contain it.

A one-dimensional system of rods of lengthσ on a line of lengthL, with periodic
boundaries, provides a simple illustration of the method. This model has just one inherent
structure, the perfect crystal, with densityy0 = Nσ/L = 1. Each rod is contained between
the nearest rod on either side and, in each cycle, the method moves every rod to the point
midway between its containing pair, using their positions after the previous cycle. Thenσ

is increased until the closest pair touch and the cycle is repeated. The rods quickly expand
to cover the whole line. For example, starting aty = 0 with five random points,y = 0.99
after 40 cycles and 0.999 999 after 80 cycles. If the rod positions are updated in sequence,
from left to right, and a rod is placed midway between the current positions (rather than
the old ones) of its containing pair, theny = 0.999 999 after 20 cycles.

i

1

2

3

Figure 1. The geometrical construction used to find the new position of disci in the second
method. For each set of three neighbours ofi the vertices of the triangle shown are midway
betweeni and a neighbour. The new position of disci, marked by a cross, is the circumcentre
of the triangle that encloses the centre ofi and has the smallest circumradius.

Figure 1 outlines the same principle for hard discs of equal size. The three discs that
most closely contain a particular disc are located as follows: for each neighbour,k, of disc
i, the midpointPik of the line joining the centres of discsi and k is located. Each set
of three neighbours define a triangle with verticesPik, k = 1, 2 and 3. The triangle that
enclosesi, in the sense that the centre ofi is within the triangle, and which has the smallest
circumradius of all such triangles, is the one that most closely contains it, and the new
position of disci is the circumcentre of this triangle. In each cycle, the new positions of all
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Figure 2. The variation of the density,y (solid line), and the number of contacts (dashed
lines), with the number of moves, obtained using the second method. The results shown are for
N = 1600 monodisperse hard discs started from an equilibrated fluid configuration at density
y = 0.68 (the fluid freezes aty = 0.69). Contacts are defined as pairs of discs for which
rij < 1.01σ (1%) or rij < 1.001σ (0.1%). The number of contacts with 0.1% tolerance was
invariably 3.05±0.1 in the jammed states, even though many of the discs are rattlers and make
no contacts.(6± 1)% of the discs make no contacts at 1% tolerance.

of the discs are calculated, on the basis of the positions at the end of the last cycle, before
any disc is moved, then all of the discs are moved simultaneously. This avoids making an
arbitrary choice of the sequence in which the particles are moved [11]. The method is very
efficient: 400 random points on a plane compress to a limiting densityy0 ≈ 0.755± 0.005
in about 1000 cycles; this takes 40 seconds on a desktop computer. Figure 2 shows how
the density and the number of near contacts vary with the number of cycles.

For mixtures in which the diameters,σi , of the discs or spheres differ, the method is
the same except that the pointsPik are located a distancerikσi/(σi + σk) from the centre of
disc i. For spheres, four pointsPik containi and the new position is the circumcentre of
the containing tetrahedron with the smallest circumradius.

For N = 1600 or 10 000 discs, or 4000 spheres, different fluid starting configurations,
equilibrated at the same densityy, compress to the same limiting densitiesy0(y), with a
standard deviation of about 0.2%. The standard deviation increases to 1% whenN = 400
and to 3% whenN ≈ 32, but the average values ofy0(y) are the same to within 1%.

A third method was developed to check the results of the previous one. For hard discs
of the same size the third method is the same, in principle, as one described by Hinrichsen
et al [19, 20] and by Meakin and Skjeltorp [7]. Hinrichsenet al [19, 20] construct the
Dirichlet polygon, which bounds the space closest to each disc, and then move each disc
to the point, within its polygon, that is as far from any side as possible. At this point the
disc is equidistant from the three closest sides of the Dirichlet polygon. The construction
shown in figure 3 accomplishes the same end. It makes the triangle of the perpendicular
bisectors of the lines joiningi to three neighbours, finds the containing triangle with the
smallest inscribed circle and moves disci to the centre of that inscribed circle. Comparing
figures 1 and 3 shows that, for the configuration shown, the new position of particlei is
practically the same, so it is not surprising that the two methods yield the same results to
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Figure 3. The construction used to find the new position of disci in the third method. For each
set of three neighbours of disci, the sides of the triangle shown are the perpendicular bisectors
of the line betweeni and a neighbour. The new position ofi, marked by a cross, is the centre
of the smallest inscribed circle of any triangle that encloses the centre ofi. The cross is very
close to the cross shown in figure 1.

within the scatter of the data.
A severe test of any method of making inherent structures is that the structure produced

should be robust with respect to small variations in the method. Ideally, any method of
finding the inherent structure should produce exactly the same structure from the same
starting configuration. One way to vary the second method is to scale the size of the moves.
This was done by placing the pointsPik at distancef rikσi/(σi + σk) from the centre of
i and varying the scaling factorf . Structures obtained by compressing the same fluid
configuration of theN = 400 hard-disc mixture withf = 0.5, 0.8 and 1 were compared by
overlaying graphics displays of the disc locations. Structures formed with different values
of f were topologically the same when the starting density was greater thany = 0.5. The
geometrical positions of a few discs often differed by a fraction of a radius, but the topology
of the network constructed by joining each disc to its contacting neighbours was the same.
Starting fromy = 0.2, the structures showed more variation but there was a percolating
framework containing about 60% of the discs that was topologically the same and within
which local regions of 20 to 40 discs were rearranged. The local rearrangements can be
traced back to a disc that passed between two of its neighbouring discs during one of the
compressions. Iff is increased to 1.4 the resulting jammed structure is quite different and
its limiting density is about 2% higher. Withf = 2 the moves immediately generate very
close pairs and the density goes to zero. The results reported are forf = 1.

3. Results

Figures 4 and 5 summarize the density,y0(y), of the inherent structures to which the
starting configurations at densityy belong, for pure hard discs, for a non-freezing mixture
of discs and for pure hard spheres. The equilibrated fluid configurations compress to inherent
structures that have well defined densities and this provides a physically motivated method
for defining the inherent structures in equation (1). Figures 4 and 5 also show the predictions
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Figure 4. The limiting density of glasses,y0(y), formed by compressing equilibrated fluid
configurations of hard discs from densityy. Crosses show results of Mason’s method applied
to the equimolar mixture ofN = 400 discs with diameters in the ratio 1.4:1. Points with error
bars are from the second method applied to the same mixture withN = 1600. The error bars
show the standard deviation iny0(y) for at least four different starting configurations at the same
densityy. At the highest starting density shown, the mixture is glassy. Squares show results of
the third method applied to the mixture ofN = 400 discs. Circles show results of the second
method applied toN = 400 (y = 0), 1600 and 10 000 monodisperse hard discs. Values ofy0(y)

for monodisperse discs are systematically lower than for the mixture. The dashed line shows
values predicted for the mixture by equation (2) withym = 0.79 and 2C/γ = 0.019 [9] and the
solid line shows the same equation withym adjusted to 0.75.
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Figure 5. The limiting density of glasses,y0(y), formed by compressing equilibrated fluid
configurations ofN = 4000 monodisperse hard spheres from densityy and the concentration of
rattlers (identified by the symbol◦) in the jammed state. Error bars show the standard deviation
for compressions from five different starting configurations equilibrated at the samey. The top
of they0-axis is aty0 = 0.6487, the random-close-packed density for spheres [14]. The dashed
line shows values ofy0(y) predicted by equation (2) withym = 0.555 and 2C/γ = 0.029
[8] and the solid line shows the same equation with the constants adjusted toym = 0.53 and
2C/γ = 0.024.
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Figure 6. A configuration of 400 monodisperse hard discs made by compressing a fluid
configuration fromy = 0.1 to y0 = 0.7450 using the second method. Discs that make no
contacts, with 0.1%σ tolerance, are marked with an inner circle. The linewidth is about 3% of
a diameter so the appearance of contacts can be misleading.

of equation (2). The limiting densities found here are lower than the predictions but they
have the same form.

The structures of low-density packings of discs are shown in figures 6 and 7. A stable
packing of discs or spheres may be defined as one that contains a percolating backbone
of rigidly jammed particles. Each backbone particle must contactD + 1 other backbone
particles, with at least one contact on any semicircle (discs) or hemisphere (spheres) of its
surface. Loose particles may rattle in cages within the backbone. Counting as rattlers those
that have no neighbours within 1.01 diameters,(6 ± 1)% of the discs and(4 ± 1)% of
the spheres are rattlers. The rattler concentration is insensitive to the density, as shown in
figure 5, and to the size of the system. Lubachevskyet al [17] reported a rattler concentration
of 2.3% in a denser (y0 = 0.63) packing of 8000 spheres and Jodrey and Tory [14] found that
4.9% of the spheres had fewer than four neighbours within 1.003 diameters in a packing
with y0 = 0.645 68. Thus there is no indication that an ‘ideal glass with no rattlers’ is
approached asy0 increases towards the ‘random-close-packed’ densityy0 = 0.6487 [14].

The lowest-density jammed packings found hady0 = 0.753 forN = 1600 discs (0.739
for N = 400), andy0 = 0.539 forN = 4000 spheres (0.494 forN = 32) seem to be the
lowest value yet reported. The high-density limit was not approached because the methods
were only applied to equilibrated fluid starting configurations, below the glass transition
density.

The number of rattlers scales withN , which means that the jammed states possess a
significant configurational entropy,Sc, and this gives some flexibility to the interpretation
of equation (1). For instance, the configuration shown in figure 6 might be counted as
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Figure 7. A jammed configuration of an equimolar mixture ofN = 400 discs with diameters
in the ratio 1.4:1. It was made by compressing the fluid fromy = 0.72 with the second method
to y0 = 0.8089. Discs that make no contacts, with 0.1%σij tolerance, are marked with an inner
circle.

exp(Sc/k) distinct inherent structures, or as one inherent structure which possesses the
entropySc at its limiting density.

The backbone of the low-density glass of discs, shown in figure 6, contains large pores
with 9 to 12 discs on their surface. Some of these pores contain rattlers and others are
empty. Larger pores have a smaller surface curvature and when three of the surface disks
are nearly linear a very small displacement of one disk, such that it passes between two
of its containing discs into the pore space, allows the pore to collapse inwards, unjamming
the surrounding backbone. This probably explains why Mason’s method produces much
denser states and why low-density glasses of discs or spheres, that can be formed by rapid
compression in molecular dynamics experiments [8, 9, 15, 18], are unstable and quickly
relax to denser states.

The radial distribution functions for the jammed states are similar to those shown for
discs by Hinrichsenet al [20] and for spheres by Lubachevskyet al [17]. They have a
very sharp peak at the contact distance but no other sharp peaks and no sign of long-range
order.

Figure 8 shows that the equation of state of the fluids [8, 9, 21] can be approximated
by

pV/NkT = 1+ CDy/(y0(y)− y) (3)

whereCD depends on the spatial dimensionD. Equation (3) is exact for hard rods at all
densities withC1 = 1 andy0(y) = 1. For discs and spheres, using the measured values
of y0, the value ofCD is constant to within about 10% from the ideal gas to the glass
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Figure 8. The pressure,pV/NkT , for hard rods, discs and spheres plotted againsty/(y0 − y).
CD , whereD is the spatial dimension, is the slope of the lines shown. Crosses: pure discs;
circles: the disc mixture; squares: pure spheres.

transition; however, the values ofCD are lower than values obtained by fitting the pressure
of glasses to equation (3). The assumption thatCD is constant [8, 9] is clearly too simple.

4. Conclusions

The main goal was to verify the existence of the low-density inherent structures of hard
discs and spheres that are suggested by analyses [8, 9] of the thermodynamic properties
of the fluids and glasses in terms of equation (1). These glasses have eluded detection in
molecular dynamics experiments because they relax quickly to denser structures, but they
need to be included in any comprehensive description of the fluids and glasses in terms of
inherent structures.

The results are relevant to realistic systems because the inherent structures of hard discs
or spheres are also inherent structures (potential energy minima) of soft discs or spheres [5]
that interact with a repulsive potential that varies as(σ/r)n. Each particle in the packings
formed by the second or third methods is contained in a cage of itsD + 1 neighbours, and
they are equidistant from it, so any small displacement of a particle moves it closer to a
neighbour and increases the potential energy.

The methods used here suggest that there may be a way to define a network of bonds
connecting each particle to a few others that always contain it, in such a way that the
topology of this network is invariant during the compression and is the same for all states that
compress to the same inherent structure. If the appropriate rules are found, the assignment of
a configuration to its inherent structure could then be made without doing the compression.
The same rules could then be applied as constraints [22] in a simulation, providing a way to
extend the entropy measurements on glasses to low densities, or, equivalently, to measure
the qk in equation (1).
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